Filtering-Free Blind Separation of Correlated Images
نویسندگان
چکیده
When using ICA for image separation, a well-known problem is that most often a large correlation exists between the sources. Because of this dependence, there is no more guarantee that the global maximum of the ICA contrast matches the outputs to the sources. In order to overcome this problem, some preprocessing can be used, like e.g. band-pass filtering. However, those processings involve parameters, for which the optimal values could be tedious to adjust. In this paper, it is shown that a simple ICA algorithm can recover the sources, without any other preprocessing than whitening, when they are correlated in a specific way. First, a single source is extracted, and next, a parameter-free postprocessing is applied for optimizing the extraction of the remaining sources.
منابع مشابه
Blind Separation of Jointly Stationary Correlated Sources
The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...
متن کاملBlind Deconvolution of Timely-correlated Sources by Homomorphic Filtering in Fourier Space
An approach to multi-channel blind deconvolution is developed, which uses an adaptive filter that performs blind source separation in the Fourier space. The approach keeps (during the learning process) the same permutation and provides appropriate scaling of components for all frequency bins in the frequency space. Experiments verify a proper blind deconvolution of convolution mixtures of sources.
متن کاملAn Iterative Blind Source Separation Method for Convolutive Mixtures of Images
The paper deals with blind source separation of images. The model which is adopted here is a convolutive multi-dimensional one. Recent results about polynomial matrices in several indeterminates are used to prove the invertibility of the mixing process. We then extend an iterative blind source separation method to the multi-dimensional case and show that it still applies if the source spectra v...
متن کاملBlind Separation and Deconvolution for Real Convolutive Mixture of Temporally Correlated Acoustic Signals Using Simo-model-based Ica
We propose a new novel two-stage blind separation and deconvolution (BSD) algorithm for a real convolutive mixture of temporally correlated signals, in which a new Single-Input Multiple-Output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA consists of multiple ICAs and a fidelity controller, and each ICA runs in parallel under fidelity control ...
متن کاملBlind separation and deconvolution for convolutive mixture of speech using SIMO-model-based ICA and multichannel inverse filtering
We propose a new two-stage blind separation and deconvolution (BSD) algorithm for a convolutive mixture of speech, in which a new Single-Input Multiple-Output (SIMO)-modelbased ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005